Efficient metabolic exchange and electron transfer within a syntrophic trichloroethene-degrading coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei.
نویسندگان
چکیده
Dehalococcoides mccartyi 195 (strain 195) and Syntrophomonas wolfei were grown in a sustainable syntrophic coculture using butyrate as an electron donor and carbon source and trichloroethene (TCE) as an electron acceptor. The maximum dechlorination rate (9.9 ± 0.1 μmol day(-1)) and cell yield [(1.1 ± 0.3) × 10(8) cells μmol(-1) Cl(-)] of strain 195 maintained in coculture were, respectively, 2.6 and 1.6 times higher than those measured in the pure culture. The strain 195 cell concentration was about 16 times higher than that of S. wolfei in the coculture. Aqueous H2 concentrations ranged from 24 to 180 nM during dechlorination and increased to 350 ± 20 nM when TCE was depleted, resulting in cessation of butyrate fermentation by S. wolfei with a theoretical Gibbs free energy of -13.7 ± 0.2 kJ mol(-1). Carbon monoxide in the coculture was around 0.06 μmol per bottle, which was lower than that observed for strain 195 in isolation. The minimum H2 threshold value for TCE dechlorination by strain 195 in the coculture was 0.6 ± 0.1 nM. Cell aggregates during syntrophic growth were observed by scanning electron microscopy. The interspecies distances to achieve H2 fluxes required to support the measured dechlorination rates were predicted using Fick's law and demonstrated the need for aggregation. Filamentous appendages and extracellular polymeric substance (EPS)-like structures were present in the intercellular spaces. The transcriptome of strain 195 during exponential growth in the coculture indicated increased ATP-binding cassette transporter activities compared to the pure culture, while the membrane-bound energy metabolism related genes were expressed at stable levels.
منابع مشابه
Membrane Complexes of Syntrophomonas wolfei Involved in Syntrophic Butyrate Degradation and Hydrogen Formation
Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the bioch...
متن کاملProteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei
Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the mode...
متن کاملImpact of Ammonium on Syntrophic Organohalide-Respiring and Fermenting Microbial Communities
Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter(-1) NH4 (+)-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities fed lactate and methanol. We found that production of...
متن کاملCharacteristics of an anaerobic, syntrophic, butyrate-degrading bacterium in paddy field soil.
The number of syntrophic butyrate-degrading bacteria in a flooded paddy field soil was 1.7 x 10(3) MPN/g dry soil. Butyrate was degraded to acetate and methane when paddy soils were incubated anaerobically with the addition of butyrate. However, butyrate degradation was completely suppressed by the addition of the specific inhibitor of methanogenesis, 2-bromoethanesulfonate (BES) to the soil. A...
متن کاملDiffusion of the Interspecies Electron Carriers H(2) and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of K(m) for H(2) or Formate Uptake.
We calculated the potential H(2) and formate diffusion between microbes and found that at H(2) concentrations commonly found in nature, H(2) could not diffuse rapidly enough to dispersed methanogenic cells to account for the rate of methane synthesis but formate could. Our calculations were based on individual organisms dispersed in the medium, as supported by microscopic observations of butyra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 6 شماره
صفحات -
تاریخ انتشار 2015